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Abstract
Recently, a class of coherent states of a particle in a Penning trap was derived
by Fernández and Velázquez (2009 J. Phys. A: Math. Theor. 42 085304). By
means of the Wigner function and density matrix associated with these states,
we show that they are fully consistent with Morikawa’s definition of the
decoherence degree and hence they provide a possibility to directly access
the decoherence process in a Penning trap.

PACS numbers: 03.65.−w, 03.65.Sq, 03.65.Yz, 37.10.Ty

1. Introduction

Quantum decoherence has been intensively studied in the last decades, since it is crucial
for a fundamental understanding of quantum mechanics and also gains increasing practical
relevance in potential quantum computer implementations. Briefly, the decoherence process
can be defined as entanglement formation of a quantum system with its environment. If the
system is initially prepared in a coherent state at t = 0 and exposed to some kind of interaction
with its environment, the quantum coherence decreases with time, i.e. the properties of a
coherent state are no longer fulfilled for t > 0. One of the most convenient approaches to
investigate the decoherence behavior of a quantum system are density matrices, since it is
possible to define a dimensionless decoherence degree in terms of the so-called ‘coherence
length’ and ‘ensemble width’ which, under certain conditions, can be directly extracted from
the coordinate representation of the density matrix.

The purpose of the present paper is to demonstrate that the recently derived Penning trap
coherent states [1] indeed maximize the above-mentioned coherence definition (which is not
obvious from their purely algebraic derivation) and are therefore well suited for decoherence
studies in Penning traps. We proceed as follows: in section 2, we briefly recall the definition
and necessary properties of these particular coherent states as derived in [1]. In section 3 we
give an analytical expression for the Wigner function and the density matrix associated with
the Penning trap coherent states in coordinate representation. Morikawa’s definition of the
dimensionless decoherence degree is introduced in section 4, and the main result is presented
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and discussed subsequently. In particular, we show that the consistency of the Penning trap
coherent states with the decoherence degree definition is a direct consequence of the fact that
(i) the covariance matrix of these states is diagonal and (ii) that these states minimize the
Heisenberg uncertainty relation as shown in [1].

2. Penning trap coherent states

Coherent states [2] are an important tool in quantum mechanics and have also been studied
in connection with ion traps, e.g. in a Paul trap [3], and, most recently, in a Penning trap [1],
where the following Hamiltonian of a spinless particle with charge e (here and in the following
we set the mass m = 1 and h̄ = 1) was considered

H = p2

2
+ bLz +

1

2
[(b2 + ν)(x2 + y2) − 2νz2]. (1)

Here, b = −eB/(2c) > 0 (c being the speed of light), ν = 2e�0/d
2 < 0, B is a constant

magnetic field pointing in the z-direction, d the characteristic trap dimension and �0 the
strength of the electrostatic potential �

�(r) = �0

d2
(x2 + y2 − 2z2). (2)

In addition, the constants b and ν satisfy the relation b2 + ν > 0. The corresponding coherent
states |z1, z2, z3〉 = |z〉 can be obtained in coordinate representation starting from the extremal
state |0, 0, 0〉,

〈r|0, 0, 0〉 = ϕ0(r) = α exp

(
−

√
b2 + ν

2
(x2 + y2) −

√−ν

2
z2

)
, (3)

(where α is a normalization constant), in the following way:

ϕz(r) = C(z)F (r)ϕ0

(
x − Re[z1 − z2]

(b2 + ν)
1
4

, y +
Im[z1 + z2]

(b2 + ν)
1
4

, z +

(−2

ν

) 1
4

Im[z3]

)
, (4)

with

C(z) = exp(i(Re[z1] Im[z2] + Re[z2] Im[z1] + Re[z3] Im[z3])), (5)

F(r) = exp
(
i(b2 + ν)

1
4 (Im[z1 − z2]x + Re[z1 + z2]y) + i(−8ν)

1
4 Re[z3]z

)
. (6)

For the following calculations, we also require the expectation values and covariances
corresponding to the states (4). We denote the vector of expectation values by

m = (〈x〉, 〈y〉, 〈z〉, 〈px〉, 〈py〉, 〈pz〉)T (7)

and define the covariances of two operators A,B

σAB = 1
2 〈AB + BA〉 − 〈A〉〈B〉, (8)

which determine the symmetric covariance matrix σ . We adopt the notation σij = σji

where i, j = 1, 2, 3 correspond to the coordinates x, y, z and i, j = 4, 5, 6 to the momenta
px, py, pz. The expectation values were already calculated in [1]

〈x〉 = (b2 + ν)−
1
4 Re[z1 − z2], 〈y〉 = −(b2 + ν)−

1
4 Im[z1 + z2],

〈z〉 = −(−ν/2)−
1
4 Im[z3],

(9)
〈px〉 = (b2 + ν)

1
4 Im[z1 − z2], 〈py〉 = (b2 + ν)

1
4 Re[z1 + z2],

〈pz〉 = (−8ν)
1
4 Re[z3].
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As for the covariances, [1] gives the diagonal values of σ ,

σ11 = (4(b2 + ν))−
1
2 = σ22, σ33 = (−8ν)−

1
2 ,

σ44 = 1
2

√
b2 + ν = σ55, σ66 =

√
−ν/2, (10)

and it is straight forward to obtain the remaining off-diagonal elements. First, we note that
the states (4) can be factorized as product states, ϕz(r) = f (x)g(y)h(z), and hence it follows
directly from the definition (8) that all the covariances of the form σrirj

, σpipj
and σripj

vanish
for i �= j . Therefore, one only needs to compute σxpx

= σ14, σypy
= σ25, σzpz

= σ36, which
can be done analytically and gives

σ14 = σ25 = σ36 = 0. (11)

We see that the covariance matrix of the Penning trap coherent states is diagonal, with the
diagonal elements given by (10). In addition, the generalized uncertainty relation is minimal
for each mode

σriri
σpipi

− σ 2
ripi

= σriri
σpipi

= 1
4 , i = 1, 2, 3. (12)

In the following section, we use these results to calculate the Wigner function and the density
matrix in coordinate representation.

3. Wigner function and density matrix

It is well known [4–8] that for a Hamiltonian which is quadratic in the canonical variables and
an initial state of Gaussian type, the corresponding Wigner function fW remains Gaussian for
all times and hence the dynamics is fully determined by the time evolution of the expectation
values and covariances

fW(r, p, t) = 1√
det(2πσ(t))

exp

(
−1

2
(ξ − m(t))Tσ(t)−1(ξ − m(t))

)
, (13)

where ξ = (x, y, z, px, py, pz)
T is the phase space vector. The density matrix at any time t

can then be obtained in coordinate representation by the transformation

〈r|ρ|r′〉(t) =
∫

d3p exp(i(p · (r − r′))fW ((r + r′)/2, p, t). (14)

In particular, if the initial state is a Penning trap coherent state (4), we can insert the previous
results into this expression so that the Wigner function becomes

fW((r + r′)/2, p, t = 0) = 1

π3
exp

(
2
√

b2 + ν(x̄2 + ȳ2) +
√−8νz̄2

+
2√

b2 + ν

(
p̄x

2 + p̄y
2) +

√
−2/νp̄z

2

)
, (15)

where we used the abbreviations

r̄i = ri + r ′
i

2
− 〈ri〉, p̄i = pi − 〈pi〉. (16)

After evaluating the integral in (14), which can be done analytically, we obtain the following
expression for the density matrix:

〈r|ρ|r′〉(t = 0) =
(

2

π

)3/2 (
4

b2 + ν

)−1/2 (
−2

ν

)−1/4

exp(i(〈px〉
x + 〈py〉
y + 〈pz〉
z)

× exp

(
− 1

2

(
2
√

b2 + ν(x̄2 + ȳ2) +
√−8νz̄2

+

√
b2 + ν

2

(

2

x + 
2
y

)
+

√
−ν/2
2

z

))
, (17)
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where


ri
= ri − r ′

i . (18)

4. Decoherence degree, main result and conclusion

To the best of our knowledge, a dimensionless decoherence degree for Gaussian-type density
matrices was for the first time suggested by Morikawa [9]. It was adopted in later works
[10–12] and can also be found in recent textbooks [13, 14]. If the density matrix has the form

ρ(x, x ′, t) = N (t) exp

(
−A(t)(x − x ′)2 − iB(t)(x − x ′)(x + x ′) − C(t)

(
x + x ′

2

)2
)

, (19)

then quantum decoherence can be described by the amplitude of the off-diagonal elements, or,
as sometimes referred to in literature, by the characteristic coherence length l(t) = 1/

√
8A(t)

and ensemble width 
X(t) = 1/
√

2C(t). These two quantities allow a definition of a
dimensionless degree of quantum decoherence

δQD(t) = l(t)


X(t)
= 1

2

√
C(t)

A(t)
, (20)

such that δQD = 0 corresponds to a total loss of quantum coherence. This definition is derived
from the position representation of the density operator, and it is therefore sometimes also
referred to as spatial decoherence in the literature. The physical reasons for this choice are
discussed in detail in [14] (see, e.g., introduction to chapter 3 therein), and here we only mention
one of the main arguments, namely that probably the most important decoherence source is
given by scattering processes between the reduced system and environmental particles. This
leads to ‘ . . . system-environment entanglement that delocalizes local phase relations between
spatially separated wave-function components, leading to decoherence in position space
(i.e.,to localization)’. Technically, however, it is as well possible to define a decoherence degree
in momentum space, at least for the particular case studied in the present paper. The position
representation of the density operator from which the decoherence degree (20) was extracted
is obtained by integrating out the momenta in the Wigner function (cf equation (14)), but
one can equally treat the dynamics in momentum space. Thus, the momentum representation
of the density operator is obtained by integrating out the coordinates in the Wigner function
and, since the Hamiltonian is quadratic in the canonical variables, the transformation yields
the same Gaussian structure as in (19), where x, x ′ are replaced by p, p′ and the coefficients
A(t), B(t) and C(t) have a different form. The degree of momentum decoherence can then,
in principle, be defined in the same manner, but the coefficients A(t) and C(t) can no longer
be interpreted in terms of a coherence length and an ensemble width, at least not in the
common sense. However, in this context we would like to mention that, although the vast
majority of master equations used to describe collisional decoherence [15–19] deals with the
time evolution of the density operator in position representation ρ(r, r′, t), a possibility of
extracting information about decoherence from its momentum representation ρ(p, p′, t) was
indeed presented recently [20]. Therein, the author also points out that the answer to the
question whether momentum decoherence occurs in addition to spatial decoherence or not is
directly related to the mass ratio of the tracer and the particles in the environment, that is, if this
ratio is negligible, so is momentum decoherence. The physical interpretation of momentum
decoherence is then different from the one quoted previously, since it does not describe spatial
localization but is related to the rate of particles being scattered off the environment into
different directions (or with different velocities).
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Combining the result from the previous section (17) with the decoherence degree definition
(20), it follows that the Penning trap coherent states satisfy δQD(t = 0) = 1 for each mode
and are therefore perfectly coherent in line with Morikawa’s definition

δx
QD(t = 0) = δ

y

QD(t = 0) = 1

2

√
4

√
b2 + ν√
b2 + ν

= 1, δz
QD(t = 0) = 1

2

√ √−8ν√−ν/2
= 1.

(21)

As can be seen, this is a direct consequence of their property to minimize the uncertainty
relation (12). This result allows future studies of decoherence processes in Penning traps: as
previously mentioned, the dynamics of the system (and, in particular, the decoherence degree
itself) is fully given by the time evolution of the first two moments. If the latter one is obtained
from unitary phase space dynamics (e.g. time-dependent Schrödinger equation [21, 22] or
by means of the Weyl–Wigner–Moyal propagator [23]), quantum coherence (δQD = 1) is
preserved for all times. However, if instead of a unitary time evolution the expectation values
and variances are obtained within a model that takes into account environmental effects, one
also directly obtains the decoherence degree of the system as a function of time, and the
coherent states (4) are, as just shown, excellent candidates for an initial state. As an example,
we mention the Markovian master equation based on semigroups [24], where decoherence
is described by Lindblad operators [25–27]. This makes it possible to study the dependence
of the decoherence rate on parameters like temperature or environmental coupling strength.
Investigations in this direction could be relevant in view of possible quantum computational
applications of electron or ion traps [28–40]. Note, however, that in a full time-dependent
treatment the covariance matrix is not necessarily diagonal at all times, which makes the
general time-dependent expressions for the coherence length and the ensemble width (and
hence the decoherence degree) more complicated than the initial ones explicitly given here.

Acknowledgments
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